On-Farm Evaluation of Various Rice (Oryza sativa) Based Cropping Systems to Improve Profitability and Resource Use Efficiency in Coastal Saline Zone of West Bengal

M. Ray, D.C. Roy ${ }^{1}$, P. Haldar, N.B. Choudhury and P.K. Sahoo ${ }^{2}$
AICRP on Integrated Farming Systems, BCKV, Kalyani, Nadia-741 235, India
${ }^{1}$ Department of ILFC, WBUAFS, Kolkata-700 037, India
${ }^{2}$ Department of Agricultural Statistics, BCKV, Mohanpur, Nadia-741 252, India
E-mail: manabbckv@gmail.com

Abstract

A farmers' participatory field experiment with four different rice-based cropping systems was conducted during 2011-12 and 201213 in coastal saline zone of West Bengal. Due to low land agro-ecosystem, conventionally farmers grow long duration high yielding varieties of rice during wet season and keep their land either fallow or marginally growing some low water requiring crops in dry season (rabi and summer) using residual moisture or life saving irrigation. This study was aimed to evaluated profitability and resource use efficiency of rice-greengram, rice - sunflower, rice - sunflower + greengram and rice - lady's finger cropping systems. Rice - lady's finger cropping system recorded significantly higher yield of rice grain ($4,617.04 \mathrm{~kg} \mathrm{ha}^{-1}$) and straw ($6,605.11 \mathrm{~kg} \mathrm{ha}^{-1}$), system equivalent yield ($28,080.17 \mathrm{~kg} \mathrm{ha}^{-1}$) and productivity ($78.01 \mathrm{~kg} \mathrm{ha}^{-1}$ day $^{-1}$). The highest net return ($₹ 1,44,600 \mathrm{ha}^{-1}$) and $\mathrm{B}: \mathrm{C}$ ratio ($2: 24$) were also obtained in rice - lady's finger cropping system, followed by rice - sunflower. Rice - sunflower cropping system recorded significantly higher phosphate and potash uptake, however, regarding nitrogen uptake the same was at par with rice - lady's finger system. Higher land use efficiency, irrigation water use efficiency, energy output and employment generation were registered with rice - lady's finger system followed by rice - sunflower.

Key Words: Cropping System, Coastal Saline Zone, Employment Generation, Energy Output

